18 research outputs found

    Dopamine in the dorsal hippocampus impairs the late-consolidation of cocaine-associated memory

    Get PDF
    Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine-place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.Fil: Kramar, Cecilia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Chefer, Vladimir I.. National Institutes of Health; Estados UnidosFil: Wise, Roy A.. National Institutes of Health; Estados UnidosFil: Medina, Jorge Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Barbano, María Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    In middle-aged and old obese patients, training intervention reduces leptin level: A meta-analysis

    Get PDF
    BACKGROUND: Leptin is one of the major adipokines in obesity that indicates the severity of fat accumulation. It is also an important etiological factor of consequent cardiometabolic and autoimmune disorders. Aging has been demonstrated to aggravate obesity and to induce leptin resistance and hyperleptinemia. Hyperleptinemia, on the other hand, may promote the development of age-related abnormalities. While major weight loss has been demonstrated to ameliorate hyperleptinemia, obese people show a poor tendency to achieve lasting success in this field. The question arises whether training intervention per se is able to reduce the level of this adipokine. OBJECTIVES: We aimed to review the literature on the effects of training intervention on peripheral leptin level in obesity during aging, in order to evaluate the independent efficacy of this method. In the studies that were included in our analysis, changes of adiponectin levels (when present) were also evaluated. DATA SOURCES: 3481 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 19 articles were suitable for analyses. STUDY ELIGIBILITY CRITERIA: Empirical research papers were eligible provided that they reported data of middle-aged or older (above 45 years of age) overweight or obese (body mass index above 25) individuals and included physical training intervention or at least fitness status of groups together with corresponding blood leptin values. STATISTICAL METHODS: We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. To assess publication bias Egger's test was applied. In case of significant publication bias, the Duval and Tweedie's trim and fill algorithm was used. RESULTS: Training intervention leads to a decrease in leptin level of middle-aged or older, overweight or obese male and female groups, even without major weight loss, indicated by unchanged serum adiponectin levels. Resistance training appears to be more efficient in reducing blood leptin level than aerobic training alone. CONCLUSIONS: Physical training, especially resistance training successfully reduces hyperleptinemia even without diet or major weight loss

    Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens

    Get PDF
    Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward
    corecore